[1] M., Berreni, M. Wang, "Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing". Computers & Chemical Engineering, 2011. 35(12): p. 2876-2885.
[2] P. Ranjan, P. Kannan, A. Al Shoaibi, C. Srinivasakannan, "Modeling of Ethane Thermal Cracking Kinetics in a Pyrocracker". Chemical Engineering & Technology, 2012. 35(6): p. 1093-1097.
[3] S.M. Sadrameli, A.E.S. Green, "Systematics and modeling representations of naphtha thermal cracking for olefin production". Journal of Analytical and Applied Pyrolysis, 2005. 73(2): p. 305-313.
[4] T. Ren, M. Patel, K. Blok, "Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes". Energy, 2006. 31(4): p. 425-451.
[5] A. Ramírez, J.L. Hueso, R. Mallada, J. Santamaría, "Ethylene epoxidation in microwave heated structured reactors". Catalysis Today, 2016. 273: p. 99-105.
[6] A. Prieto, M. Palomino, U. Díaz, A. Corma, "One-pot two-step process for direct propylene oxide production catalyzed by bi-functional Pd(Au)@TS-1 materials". Applied Catalysis A: General, 2016. 523: p. 73-84.
[7] Y. Kubota, S. Inagaki, K. Takechi, "Hexane cracking catalyzed by MSE-type zeolite as a solid acid catalyst". Catalysis Today, 2014. 226: p. 109-116.
[8] Y. Wang, T. Yokoi, S. Namba, J.N. Kondo, T. Tatsumi, "Catalytic cracking of n-hexane for producing propylene on MCM-22 zeolites". Applied Catalysis A: General, 2015. 504: p. 192-202.
[9] Y. Wang, R. Otomo, T. Tatsumi, T. Yokoi, " Dealumination of organic structure-directing agent (OSDA) free beta zeolite for enhancing its catalytic performance in n-hexane cracking". Microporous and Mesoporous Materials, 2016. 220: p. 275-281.
[10] Y. Wang, T. Yokoi, S. Namba, J.N. Kondo, T. Tatsumi, "Improvement of catalytic performance of MCM-22 in the cracking of n-hexane by controlling the acidic property". Journal of Catalysis, 2016. 333: p. 17-28.
[11] A. Yamaguchi, D. Jin, T. Ikeda, K. Sato, N. Hiyoshi, T. Hanaoka, F. Mizukami, M. Shirai, "Deactivation of ZSM-5 zeolite during catalytic steam cracking of n-hexane". Fuel Processing Technology, 2014. 126: p. 343-349.
[12] A. Yamaguchi, D. Jin, T. Ikeda, K. Sato, N. Hiyoshi, T. Hanaoka, F. Mizukami, M. Shirai, "Effect of steam during catalytic cracking of n-hexane using P-ZSM-5 catalyst". Catalysis Communications, 2015. 69: p. 20-24.
[13] R. Javaid, K. Urata, S. Furukawa, T. Komatsu, "Factors affecting coke formation on H-ZSM-5 in naphtha cracking". Applied Catalysis A: General,2015 .491: p. 100-105.
[14] K. Urata, S. Furukawa, T. Komatsu, "Location of coke on H-ZSM-5 zeolite formed in the cracking of n-hexane". Applied Catalysis A: General, 2014. 475: p. 335-340.
[15] N. Jia, R.G. Moore, S.A. Mehta, M.G. Ursenbach, "Kinetic modeling of thermal cracking reactions". Fuel, 2009. 88(8): p. 1376-1382.
[16] C.C.R.S. Rossi, C.G. Alonso, O.A.C. Antunes, R. Guirardello, L. Cardozo-Filho, "Thermodynamic analysis of steam reforming of ethanol and glycerine for hydrogen production". International Journal of Hydrogen Energy, 2009. 34(1): p. 323-332.
[17] Y. Yan, J. Zhang, L. Zhang, "Properties of thermodynamic equilibrium-based methane autothermal reforming to generate hydrogen". International Journal of Hydrogen Energy, 2013. 38(35): p. 15744-15750.
[18] C.C.R.S. Rossi, L. Cardozo-Filho, R. Guirardello, "Gibbs free energy minimization for the calculation of chemical and phase equilibrium using linear programming". Fluid Phase Equilibria, 2009. 278(1-2): p. 117-128.
[19] Y. LWIN, "Chemical Equilibrium by Gibbs Energy Minimization on Spreadsheets". International Journal of Engineering Education, Int. J. Engng Ed. 16(4): p. 335-339.
[20] T.A. Semelsberger, R.L. Borup, "Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation". Journal of Power Sources, 2006. 155(2): p. 340-352.
[21] K. Faungnawakij, R. Kikuchi, K. Eguchi, "Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether". Journal of Power Sources, 2007. 164(1): p. 73-79.
[22] T. Renganathan, M.V. Yadav, S. Pushpavanam, R.K. Voolapalli, Y.S. Cho, "CO2 utilization for gasification of carbonaceous feedstocks: A thermodynamic analysis". Chemical Engineering Science, 2012. 83: p. 159-170.
[23] K. Faungnawakij, R. Kikuchi, K. Eguchi, "Thermodynamic evaluation of methanol steam reforming for hydrogen production". Journal of Power Sources, 2006. 161(1): p. 87-94.
[24] Y. Sun, T. Ritchie, S.S. Hla, S. McEvoy, W. Stein, J.H. Edwards, "Thermodynamic analysis of mixed and dry reforming of methane for solar thermal applications". Journal of Natural Gas Chemistry, 2011. 20(6): p. 568-576.
[25] R. Zhang, Z. Wang, H. Liu, Z. Liu, G. Liu, X. Meng, "Thermodynamic equilibrium distribution of light olefins in catalytic pyrolysis". Applied Catalysis A: General, 2016. 522: p. 165-171.
[26] A. Burcat, Thermochemical Data for Combustion Calculations, in Combustion Chemistry, W.C. Gardiner, Editor. 1984, Springer US: New York, NY. p. 455-473.
[27] D. Green, R. Perry, Perry's Chemical Engineers' Handbook, Eighth Edition. 2007, New York: McGraw-Hill Education.
[28] L.H. Nguyen, T. Vazhnova, S.T. Kolaczkowski, D.B. Lukyanov, "Combined experimental and kinetic modelling studies of the pathways of propane and -butane aromatization over H-ZSM-5 catalyst". Chemical Engineering Science, 2006. 61(17): p. 5881-5894.
[29] H. Mochizuki, T. Yokoi, H. Imai, S. Namba, J.N. Kond, T. Tatsumi, "Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking". Applied Catalysis A: General, 2012. 449: p. 188-197.
[30] H. Mochizuki, T. Yokoi, H. Imai, R. Watanabe, S. Namba, J.N. Kondo, T. Tatsumi, "Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane". Microporous and Mesoporous Materials, 2011. 145(1-3): p. 165-171.
[31] H. Konno, T. Okamura, T. Kawahara, Y. Nakasaka, T. Tago, T. Masuda, "Kinetics of n-hexane cracking over ZSM-5 zeolites-Effect of crystal size on effectiveness factor and catalyst lifetime". Chemical Engineering Journal, 2012. 207-208: p. 490-496.
[32] T. Tago, H. Konno, Y. Nakasaka, T. Masuda, "Size-Controlled Synthesis of Nano-Zeolites and Their Application to Light Olefin Synthesis". Catalysis Surveys from Asia, 2012. 16(3): p. 148-163.
[33] A. Al-Musa, M. Al-Saleh, Z.C. Ioakeimidis, M. Ouzounidou, I.V. Yentekakis, M. Konsolakis, G.E. Marnellos, "Hydrogen production by iso-octane steam reforming over Cu catalysts supported on rare earth oxides (REOs)". International Journal of Hydrogen Energy, 2014. 39(3): p. 1350-1363.