[1] M. Farmahini-Farahani, S. Delfani, J. Esmaeelian, Exergy analysis of evaporative cooling to select the optimum system in diverse climates, Energy, 40 (2012) 250-257.
[2] X. Chen, Y. Su, D. Aydin, Y. Ding, S. Zhang, D. Reay, S. Riffat, A novel evaporative cooling system with a polymer hollow fibre spindle, Applied Thermal Engineering, 132 (2018) 665-675.
[3] S. Englart, Use of a membrane module for semi-direct air evaporative cooling, Indoor and Built Environment, (2019) 1420326X19877510.
[4] S. Englart, Comparison heat and mass transfer coefficients in the shell side of the hollow fiber membrane module, in: E3S Web of Conferences, EDP Sciences, 2018, pp. 00040.
[5] M. Ali, O. Zeitoun, H. Al-Ansary, A. Nuhait, Humidification technique using new modified MiniModule membrane contactors for air cooling, Advances in Mechanical Engineering, 5 (2013) 174016.
[6] F. Abdollahi, S. Hashemifard, A. Khosravi, T. Matsuura, Heat and mass transfer modeling of an energy efficient Hybrid Membrane-Based Air Conditioning System for humid climates, Journal of Membrane Science, (2021) 119179.
[7] G. Bakeri, S. Naeimifard, T. Matsuura, A. Ismail, A porous polyethersulfone hollow fiber membrane in a gas humidification process, RSC Advances, 5 (2015) 14448-14457.
[8] L.-Z. Zhang, S.-M. Huang, Coupled heat and mass transfer in a counter flow hollow fiber membrane module for air humidification, International Journal of Heat and Mass Transfer, 54 (2011) 1055-1063.
[9] Z. He, C. Liang, Experimental Study on Energy and Exergy Analysis of a Counter Hollow Fiber Membrane-based Humidifier, International Journal of Energy and Power Engineering, 9 (2020) 95.
[10] X. Chen, Y. Su, D. Aydin, X. Zhang, Y. Ding, D. Reay, R. Law, S. Riffat, Experimental investigations of polymer hollow fibre integrated evaporative cooling system with the fibre bundles in a spindle shape, Energy and Buildings, 154 (2017) 166-174.
[11] L.-Z. Zhang, Heat and mass transfer in a randomly packed hollow fiber membrane module: a fractal model approach, International Journal of heat and mass transfer, 54 (2011) 2921-2931.
[12] L.Z. Zhang, Mass diffusion in a hydrophobic membrane humidification/dehumidification process: the effects of membrane characteristics, Separation science and technology, 41 (2006) 1565-1582.
[13] S.A. Hashemifard, A. Khosravi, F. Abdollahi, Z. Alihemati, M. Rezaee, Synthetic polymeric membranes for gas and vapor separations, in: Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability, Elsevier, 2020, pp. 217-272.
[14] X. Cui, W. Yan, X. Chen, Y. Wan, K.J. Chua, Parametric study of a membrane-based semi-direct evaporative cooling system, Energy and Buildings, 228 (2020) 110439.
[15] A. Samimi, S.A. Mousavi, A. Moallemzadeh, R. Roostaazad, M. Hesampour, A. Pihlajamäki, M. Mänttäri, Preparation and characterization of PES and PSU membrane humidifiers, Journal of membrane science, 383 (2011) 197-205.
[16] S. Bergero, A. Chiari, Experimental and theoretical analysis of air humidification/dehumidification processes using hydrophobic capillary contactors, Applied Thermal Engineering, 21 (2001) 1119-1135.
[17] E. Drioli, A. Criscuoli, E. Curcio, Membrane contactors: fundamentals, applications and potentialities, Elsevier, 2011.
[18] A. Chiari, Air humidification with membrane contactors: experimental and theoretical results, International journal of ambient energy, 21 (2000) 187-195.
[19] D.W. Johnson, C. Yavuzturk, J. Pruis, Analysis of heat and mass transfer phenomena in hollow fiber membranes used for evaporative cooling, Journal of Membrane Science, 227 (2003) 159-171.
[20] L.-Z. Zhang, Z.-X. Li, T.-S. Zhong, L.-X. Pei, Flow maldistribution and performance deteriorations in a cross flow hollow fiber membrane module for air humidification, Journal of membrane science, 427 (2013) 1-9.
[21] M. Yang, S.-M. Huang, X. Yang, Experimental investigations of a quasi-counter flow parallel-plate membrane contactor used for air humidification, Energy and buildings, 80 (2014) 640-644.
[22] S. Englart, An experimental study of the air humidification process using a membrane contactor, in: E3S Web of Conferences, EDP Sciences, 2017, pp. 00021.
[23] G. Bakeri, A Comparative Study on the Application of Porous PES and PEI Hollow Fiber Membranes in Gas Humidifcation Process, Journal of Membrane Science and Research, 5 (2019) 11-19.
[24] X. Cui, W. Yan, Y. Liu, M. Zhao, L. Jin, Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling, Applied Energy, 271 (2020) 115238.
[25] R. Naim, A. Ismail, Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping, Journal of hazardous materials, 250 (2013) 354-361.
[26] S. Chabot, C. Roy, G. Chowdhury, T. Matsuura, Development of poly (vinylidene fluoride) hollow‐fiber membranes for the treatment of water/organic vapor mixtures, Journal of applied polymer science, 65 (1997) 1263-1270.
[27] I. Jesswein, T. Hirth, T. Schiestel, Continuous dip coating of PVDF hollow fiber membranes with PVA for humidification, Journal of Membrane Science, 541 (2017) 281-290.
[28] C. Barth, M. Goncalves, A. Pires, J. Roeder, B. Wolf, Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance, Journal of Membrane Science, 169 (2000) 287-299.
[29] Y.-H. Zhao, B.-K. Zhu, X.-T. Ma, Y.-Y. Xu, Porous membranes modified by hyperbranched polymers: I. Preparation and characterization of PVDF membrane using hyperbranched polyglycerol as additive, Journal of membrane science, 290 (2007) 222-229.