The variable external magnetic field effect on corrosion behavior of drilling casing of oil and gas wells in matrix acidizing with HCl solution: Experimental study and modelling

Document Type : Research Paper


1 Chemical Engineering Department, Faculty of Engineering, University of Qom, Qom, Iran

2 Petroleum Engineering Department, Amirkabir University of Iran, Tehran, Iran

3 Oil And Gas Research Institute, Ferdowsi University of Mashhad, Mashhad, Iran

4 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran


The magnetic field (MF) affects the corrosion rate of N-80 carbon steel (which is frequently used in petroleum industry) in 3.8 Molar (or 12.5% weight percent). HCl was studied first at different conditions by implementing the potentiodynamic polarization (PDP) and gravimetric weight loss (WL) procedures. Response Surface Methodology (RSM) was next implemented to investigate and simulate the impacts of intensity of the magnetic field, time of magnetization, and elapsed time on the efficiency of corrosion inhibition (η). The test results revealed that acid magnetization considerebly decreases the rate of corrosion of N-80 carbon steel (CS) in the presence of HCl up to 93% so that it can be used as an eco-friendly and cost-effective substitute for the common corrosion inhibitors. The results also revealed that η enhances by enhancing the intensity of magnetic field. The morphology of the N-80 CS surface was also studied using SEM in the magnetized and normal HCl solutions.


[1]     McLeod, H. O. Matrix Acidizing. J. Pet. Technol. 1984, 36 (12), 2, 52–55, 69.
[2]     Avdeev, Y. G.; Kuznetsov, Y. I.; Buryak, A. K. Inhibition of Steel Corrosion by Unsaturated Aldehydes in Solutions of Mineral Acids. Corros. Sci. 2013, 69 (Supplement C), 50–60.
[3]     Atta, A. M.; Elsockary, M. A.; Kandil, O. F.; Shaker, N. O. Nonionic Surfactants from Recycled Poly(Ethylene Terephthalate) as Corrosion Inhibitors of Steel in 1 M HCl. J. Dispers. Sci. Technol. 2008, 29 (1), 27–39.
[4]     Al-Sabagh, A. M.; Elsabee, M.; Elazabawy, O. E.; El-Tabey, A. E. Corrosion Inhibition Efficiency of Polytriethanolamine Surfactants for Pipe-Lines Carbon Steel in 1M HCl. J. Dispers. Sci. Technol. 2010, 31 (10), 1288–1297.
[5]     Mobin, M.; Aslam, J.; Al-Lohedan, H. A. Study on the Inhibition of Mild Steel Corrosion by Cationic Gemini Surfactant in 1 M HCl. J. Dispers. Sci. Technol. 2016, 37 (7), 1002–1009.
[6]     Al-Shafey, H. I.; El Azabawy, O. E.; Ismail, E. A. Ethoxylated Melamine as Corrosion Inhibitor for Carbon Steel in 1M HCl. J. Dispers. Sci. Technol. 2011, 32 (7), 995–1001.
[7]     Ji, Q.; Zhou, L.; Nasr-El-Din, H. Acidizing Sandstone Reservoirs With Aluminum-Based Retarded Mud Acid. SPE J. 2015.
[8]     Zakinyan, A.; Dikansky, Y.; Bedzhanyan, M. Electrical Properties of Chain Microstructure Magnetic Emulsions in Magnetic Field. J. Dispers. Sci. Technol. 2014, 35 (1), 111–119.
[9]     Garcia‐Martinez, H. A.; Llamas‐Bueno, M.; Song, S.; Lopez‐Valdivieso, A. Computational Study on Stability of Magnetite and Quartz Suspensions in an External Magnetic Field. J. Dispers. Sci. Technol. 2005, 26 (2), 177–182.
[10]     ZHANG, P.; Qiang, Z. H. U.; Qian, S. U.; Bin, G. U. O.; CHENG, S. Corrosion Behavior of T2 Copper in 3.5% Sodium Chloride Solution Treated by Rotating Electromagnetic Field. Trans. Nonferrous Met. Soc. China 2016, 26 (5), 1439–1446.
[11]     LI, J.; ZHANG, P.; Bin, G. U. O. Effects of Rotating Electromagnetic on Flow Corrosion of Copper in Seawater. Trans. Nonferrous Met. Soc. China 2011, 21, s489–s493.
[12]     Zhang, P.; Guo, B.; Jin, Y.-P.; Cheng, S.-K. Corrosion Characteristics of Copper in Magnetized Sea Water. Trans. Nonferrous Met. Soc. China 2007, 17 (s1A), s189–s193.
[13]     Bikul’chyus, G.; Ruchinskene, A.; Deninis, V. Corrosion Behavior of Low-Carbon Steel in Tap Water Treated with Permanent Magnetic Field. Prot. Met. 2003, 39 (5), 443–447.
[14]     Hryniewicz, T.; Rokosz, K.; Rokicki, R. Electrochemical and XPS Studies of AISI 316L Stainless Steel after Electropolishing in a Magnetic Field. Corros. Sci. 2008, 50 (9), 2676–2681.
[15]     Chiba, A.; Kawazu, K.; Nakano, O.; Tamura, T.; Yoshihara, S.; Sato, E. The Effects of Magnetic Fields on the Corrosion of Aluminum Foil in Sodium Chloride Solutions. Corros. Sci. 1994, 36 (3), 539–543.
[16]     Jayaraman, T. V; Guruswamy, S.; Free, M. L. Effect of Magnetic Field on the Corrosion Behavior of Magnetostrictive Iron-Gallium Alloy Single Crystals. Corrosion 2007, 63 (11), 1042–1047.
[17]     Li, J.; Zhang, T.; Shao, Y.; Meng, G.; Wang, F. A Stochastic Analysis of the Effect of Magnetic Field on the Pitting Corrosion Susceptibility of Pure Magnesium. Mater. Corros. 2010, 61 (4), 306–312.
[18]     Ghabashy, M. E.; Sedahmed, G. H.; Mansour, I. A. S. Effect of a Magnetic Field on the Rate of Diffusion-Controlled Corrosion of Metals. Br. Corros. J. 2013.
[19]     Shinohara, K.; Aogaki, R. Magnetic Field Effect on Copper Corrosion in Nitric Acid. Denki Kagaku Oyobi Kogyo Butsuri Kagaku 1999, 67 (2), 126–131.
[20]     Chiba, A.; Okada, M.; Ogawa, T. Magnetic Field Effects on Dissolution of Nickel, Copper, Zinc and Brass in Nitric Acid Solution. Boshoku Gijutsu(Corros. Eng.) 1988, 37 (5), 259–264.
[21]     Busch, K. W.; Busch, M. A.; Parker, D. H.; Darling, R. E.; McAtee Jr, J. L. Studies of a Water Treatment Device That Uses Magnetic Fields. Corrosion 1986, 42 (4), 211–221.
[22]     Sagawa, M. Effect of a Local Magnetic Field on the Dissolution of Copper and Iron in Nitric Acid Solution. Trans. Japan Inst. Met. 1982, 23 (1), 38–40.
[23]     Sueptitz, R.; Tschulik, K.; Uhlemann, M.; Eckert, J.; Gebert, A. Retarding the Corrosion of Iron by Inhomogeneous Magnetic Fields. Mater. Corros. 2014, 65 (8), 803–808.
[24]     Chiba, A.; Tanaka, N.; Ueno, S.; Ogawa, T. Inhibition of Iron Corrosion in Sodium Chloride Solutions by Magnetic Fields. Corros. Eng. 1992, 45 (5), 333–341.
[25]     Ručinskien, A.; Bikulčius, G.; Gudavičiūt, L.; Juzeliūnas, E. Magnetic Field Effect on Stainless Steel Corrosion in FeCl 3 Solution. Electrochem. commun. 2002, 4 (1), 86–91.
[26]     Srivastava, K.; Nigam, N. Protection of Mild Steel in Sulphuric Acid by Magnetic Fields. Br. Corros. J. 2013.
[27]     Chiba, A.; Ogawa, T. Effects of Magnetic Field Direction on the Dissolution of Copper, Zinc, and Brass in Nitric Acid [J]. Corros. Eng 1988, 37 (10), 531.
[28]     Gokhale, S.; Ellis, S. API Specification 5CT N-80 Grade Casing May Burst or Part Unexpectedly If Supplementary Metallurgical Requirements Are Not Specified. Society of Petroleum Engineers.
[29]     Farshad, F. F.; Linsley, J.; Kuznetsov, O.; Vargas, S. The Effects of Magnetic Treatment on Calcium Sulfate Scale Formation. In SPE Western Regional/AAPG Pacific Section Joint Meeting; Society of Petroleum Engineers, 2002.
[30]     İlbay, Z.; Şahin, S.; Büyükkabasakal, K. A Novel Approach for Olive Leaf Extraction through Ultrasound Technology: Response Surface Methodology versus Artificial Neural Networks. Korean J. Chem. Eng. 2014, 31 (9), 1661–1667.
[31]     Mansouri, Y.; Zinatizadeh, A. A.; Mohammadi, P.; Irandoust, M.; Akhbari, A.; Davoodi, R. Hydraulic Characteristics Analysis of an Anaerobic Rotatory Biological Contactor (AnRBC) Using Tracer Experiments and Response Surface Methodology (RSM). Korean J. Chem. Eng. 2012, 29 (7), 891–902.
[32]     Karmakar, M.; Mahapatra, M.; Singha, N. R. Separation of Tetrahydrofuran Using RSM Optimized Accelerator-Sulfur-Filler of Rubber Membranes: Systematic Optimization and Comprehensive Mechanistic Study. Korean J. Chem. Eng. 2017, 34 (5), 1416–1434.
[33]     Suwanthai, W.; Punsuvon, V.; Vaithanomsat, P. Optimization of Biodiesel Production from a Calcium Methoxide Catalyst Using a Statistical Model. Korean J. Chem. Eng. 2016, 33 (1), 90–98.
[34]     Tak, K.; Kim, J.; Kwon, H.; Cho, J. H.; Moon, I. Kriging Models for Forecasting Crude Unit Overhead Corrosion. Korean J. Chem. Eng. 2016, 33 (7), 1999–2006.
[35]     Noor, E. A.; Al-Moubaraki, A. H. Corrosion Behavior of Mild Steel in Hydrochloric Acid Solutions. Int. J. Electrochem. Sci 2008, 3 (1), 806–818.
[36]     Chin, R. J.; Nobe, K. Electrodissolution Kinetics of Iron in Chloride Solutions III. Acidic Solutions. J. Electrochem. Soc. 1972, 119 (11), 1457–1461.
[37]     MacFarlane, D. R.; Smedley, S. I. The Dissolution Mechanism of Iron in Chloride Solutions. J. Electrochem. Soc. 1986, 133 (11), 2240–2244.
[38]     Uhlig, H. H.; King, C. V. Corrosion and Corrosion Control. J. Electrochem. Soc. 1972, 119 (12), 327C–327C.
[39]     Ashassi-Sorkhabi, H.; Seifzadeh, D. The Inhibition of Steel Corrosion in Hydrochloric Acid Solution by Juice of Prunus Cerasus. Int. J. Electrochem. Sci 2006, 1 (1), 92–96.
[40]     Imamura, T.; Yamada, Y.; Oi, S.; Honda, H. Orientation Behavior of Carbonaceous Mesophase Spherules Having a New Molecular Arrangement in a Magnetic Field. Carbon N. Y. 1978, 16 (6), 481–486.
[41]     Chang, K.-T.; Weng, C.-I. The Effect of an External Magnetic Field on the Structure of Liquid Water Using Molecular Dynamics Simulation. J. Appl. Phys. 2006, 100 (4), 43917.
[42]     Cai, R.; Yang, H.; He, J.; Zhu, W. The Effects of Magnetic Fields on Water Molecular Hydrogen Bonds. J. Mol. Struct. 2009, 938 (1), 15–19.
[43]     Moosavi, F.; Gholizadeh, M. Magnetic Effects on the Solvent Properties Investigated by Molecular Dynamics Simulation. J. Magn. Magn. Mater. 2014, 354, 239–247.
[44]     Hosoda, H.; Mori, H.; Sogoshi, N.; Nagasawa, A.; Nakabayashi, S. Refractive Indices of Water and Aqueous Electrolyte Solutions under High Magnetic Fields. J. Phys. Chem. A 2004, 108 (9), 1461–1464.
[45]     Neufeld, P. Effect of Magnetic Fields on Electrochemical Reactions. Corros. Sci. 1994, 36 (11), 1947–1948.
[46]     Lu, Z.; Yang, W. In Situ Monitoring the Effects of a Magnetic Field on the Open-Circuit Corrosion States of Iron in Acidic and Neutral Solutions. Corros. Sci. 2008, 50 (2), 510–522.
[47]     Lu, Z.; Huang, C.; Huang, D.; Yang, W. Effects of a Magnetic Field on the Anodic Dissolution, Passivation and Transpassivation Behaviour of Iron in Weakly Alkaline Solutions with or without Halides. Corros. Sci. 2006, 48 (10), 3049–3077.
[48]     Linhardt, P.; Ball, G.; Schlemmer, E. Electrochemical Investigation of Chloride Induced Pitting of Stainless Steel under the Influence of a Magnetic Field. Corros. Sci. 2005, 47 (7), 1599–1603.
[49]     Sueptitz, R.; Koza, J.; Uhlemann, M.; Gebert, A.; Schultz, L. Magnetic Field Effect on the Anodic Behaviour of a Ferromagnetic Electrode in Acidic Solutions. Electrochim. Acta 2009, 54 (8), 2229–2233.
[50]     Tang, Y. C.; Davenport, A. J. Magnetic Field Effects on the Corrosion of Artificial Pit Electrodes and Pits in Thin Films. J. Electrochem. Soc. 2007, 154 (7), C362–C370.
[51]     Lu, Z.; Huang, D.; Yang, W.; Congleton, J. Effects of an Applied Magnetic Field on the Dissolution and Passivation of Iron in Sulphuric Acid. Corros. Sci. 2003, 45 (10), 2233–2249.
[52]     Yu, Q.-K.; Miyakita, Y.; Nakabayashi, S.; Baba, R. Magnetic Field Effect on Electrochemical Oscillations during Iron Dissolution. Electrochem. commun. 2003, 5 (4), 321–324.
[53]     Rhen, F. M. F.; Fernandez, D.; Hinds, G.; Coey, J. M. D. Influence of a Magnetic Field on the Electrochemical Rest Potential. J. Electrochem. Soc. 2006, 153 (1), J1–J7.
[54]     Lu, Z.; Huang, D.; Yang, W. Probing into the Effects of a Magnetic Field on the Electrode Processes of Iron in Sulphuric Acid Solutions with Dichromate Based on the Fundamental Electrochemistry Kinetics. Corros. Sci. 2005, 47 (6), 1471–1492.
[55]     Sueptitz, R.; Tschulik, K.; Uhlemann, M.; Schultz, L.; Gebert, A. Effect of High Gradient Magnetic Fields on the Anodic Behaviour and Localized Corrosion of Iron in Sulphuric Acid Solutions. Corros. Sci. 2011, 53 (10), 3222–3230.
[56]     Roy, R. K. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement; John Wiley & Sons, 2001.
[57]     Salehuddin, F.; Kaharudin, K. E.; Zain, A. S. M.; Yamin, A. K. M.; Ahmad, I. Analysis of Process Parameter Effect on DIBL in N-Channel MOSFET Device Using L27 Orthogonal Array. In 3RD INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS 2014): Innovative Research in Applied Sciences for a Sustainable Future; AIP Publishing, 2014; Vol. 1621, pp 322–328.
[58]     Inaba, H.; Saitou, T.; Tozaki, K.; Hayashi, H. Effect of the Magnetic Field on the Melting Transition of H2O and D2O Measured by a High Resolution and Supersensitive Differential Scanning Calorimeter. J. Appl. Phys. 2004, 96 (11), 6127–6132.
[59]     Higashitani, K.; Kage, A.; Katamura, S.; Imai, K.; Hatade, S. Effects of a Magnetic Field on the Formation of CaCO 3 Particles. J. Colloid Interface Sci. 1993, 156 (1), 90–95.
[60]     Baker, J. S.; Judd, S. J. Magnetic Amelioration of Scale Formation. Water Res. 1996, 30 (2), 247–260.