Thermodynamic Analysis of Light Olefins Production via Cracking of n-Hexane Using Gibbs Energy Minimization Approach and Analysis of Overall Reactions

Document Type: Research Paper


1 Chemical Engineering Department, Tarbiat Modares University, Jalal Al AhmadHighway,P.O.Box 4155‐4838, Tehran, Iran.

2 Chemical Engineering Faculty Tarbiat Modares University


Thermodynamic analysis of the cracking of hexane has been conducted by the Gibbs free energy minimization method and second law analysis of overall reactions. By-products have been divided into three groups of methane, alkynes and aromatics and their possible production paths have been discussed. Effect of operating conditions such as temperature and steam-to-hexane ratio on the cracking performance has been investigated. The principal set of compounds considered in the modelling is hydrogen, water, ethane, ethylene, acetylene, propane, propylene, methyl acetylene, butane, butylene and hexane. Hexane conversion increased with increase of temperature and steam content. As temperature increases, the equilibrium olefin yield shows a volcano-shaped trend. In presence of methane, the maximum olefin yield declined and shifted to lower temperatures. When aromatics were considered in the product list, the light olefins yield is negligible. Equilibrium predicts that adding steam to the feed stream led to decrease of coke deposition through suppressing of aromatization reaction.


Full Text

[1]          M., Berreni, M. Wang, "Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing". Computers & Chemical Engineering, 2011. 35(12): p. 2876-2885.

[2]          P. Ranjan, P. Kannan, A. Al Shoaibi, C. Srinivasakannan, "Modeling of Ethane Thermal Cracking Kinetics in a Pyrocracker". Chemical Engineering & Technology, 2012. 35(6): p. 1093-1097.

[3]          S.M. Sadrameli, A.E.S. Green, "Systematics and modeling representations of naphtha thermal cracking for olefin production". Journal of Analytical and Applied Pyrolysis, 2005. 73(2): p. 305-313.

[4]          T. Ren, M. Patel, K. Blok, "Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes". Energy, 2006. 31(4): p. 425-451.

[5]          A. Ramírez, J.L. Hueso, R. Mallada, J. Santamaría, "Ethylene epoxidation in microwave heated structured reactors". Catalysis Today, 2016. 273: p. 99-105.

[6]          A. Prieto, M. Palomino, U. Díaz, A. Corma, "One-pot two-step process for direct propylene oxide production catalyzed by bi-functional Pd(Au)@TS-1 materials". Applied Catalysis A: General, 2016. 523: p. 73-84.

[7]          Y. Kubota, S. Inagaki, K. Takechi, "Hexane cracking catalyzed by MSE-type zeolite as a solid acid catalyst". Catalysis Today, 2014. 226: p. 109-116.

[8]          Y. Wang, T. Yokoi, S. Namba, J.N. Kondo, T. Tatsumi, "Catalytic cracking of n-hexane for producing propylene on MCM-22 zeolites". Applied Catalysis A: General, 2015. 504: p. 192-202.

[9]          Y. Wang, R. Otomo, T. Tatsumi, T. Yokoi, " Dealumination of organic structure-directing agent (OSDA) free beta zeolite for enhancing its catalytic performance in n-hexane cracking". Microporous and Mesoporous Materials, 2016. 220: p. 275-281.

[10]       Y. Wang, T. Yokoi, S. Namba, J.N. Kondo, T. Tatsumi, "Improvement of catalytic performance of MCM-22 in the cracking of n-hexane by controlling the acidic property". Journal of Catalysis, 2016. 333: p. 17-28.

[11]       A. Yamaguchi, D. Jin, T. Ikeda, K. Sato, N. Hiyoshi, T. Hanaoka, F. Mizukami, M. Shirai, "Deactivation of ZSM-5 zeolite during catalytic steam cracking of n-hexane". Fuel Processing Technology, 2014. 126: p. 343-349.

[12]       A. Yamaguchi, D. Jin, T. Ikeda, K. Sato, N. Hiyoshi, T. Hanaoka, F. Mizukami, M. Shirai, "Effect of steam during catalytic cracking of n-hexane using P-ZSM-5 catalyst". Catalysis Communications, 2015. 69: p. 20-24.

[13]       R. Javaid, K. Urata, S. Furukawa, T. Komatsu, "Factors affecting coke formation on H-ZSM-5 in naphtha cracking". Applied Catalysis A: General,2015 .491: p. 100-105.

[14]       K. Urata, S. Furukawa, T. Komatsu, "Location of coke on H-ZSM-5 zeolite formed in the cracking of n-hexane". Applied Catalysis A: General, 2014. 475: p. 335-340.

[15]       N. Jia, R.G. Moore, S.A. Mehta, M.G. Ursenbach, "Kinetic modeling of thermal cracking reactions". Fuel, 2009. 88(8): p. 1376-1382.

[16]       C.C.R.S. Rossi, C.G. Alonso, O.A.C. Antunes, R. Guirardello, L. Cardozo-Filho, "Thermodynamic analysis of steam reforming of ethanol and glycerine for hydrogen production". International Journal of Hydrogen Energy, 2009. 34(1): p. 323-332.

[17]       Y. Yan, J. Zhang, L. Zhang, "Properties of thermodynamic equilibrium-based methane autothermal reforming to generate hydrogen". International Journal of Hydrogen Energy, 2013. 38(35): p. 15744-15750.

[18]       C.C.R.S. Rossi, L. Cardozo-Filho, R. Guirardello, "Gibbs free energy minimization for the calculation of chemical and phase equilibrium using linear programming". Fluid Phase Equilibria, 2009. 278(1-2): p. 117-128.

[19]       Y. LWIN, "Chemical Equilibrium by Gibbs Energy Minimization on Spreadsheets". International Journal of Engineering Education, Int. J. Engng Ed. 16(4): p. 335-339.

[20]       T.A. Semelsberger, R.L. Borup, "Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation". Journal of Power Sources, 2006. 155(2): p. 340-352.

[21]       K. Faungnawakij, R. Kikuchi, K. Eguchi, "Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether". Journal of Power Sources, 2007. 164(1): p. 73-79.

[22]       T. Renganathan, M.V. Yadav, S. Pushpavanam, R.K. Voolapalli, Y.S. Cho, "CO2 utilization for gasification of carbonaceous feedstocks: A thermodynamic analysis". Chemical Engineering Science, 2012. 83: p. 159-170.

[23]       K. Faungnawakij, R. Kikuchi, K. Eguchi, "Thermodynamic evaluation of methanol steam reforming for hydrogen production". Journal of Power Sources, 2006. 161(1): p. 87-94.

[24]       Y. Sun, T. Ritchie, S.S. Hla, S. McEvoy, W. Stein, J.H. Edwards, "Thermodynamic analysis of mixed and dry reforming of methane for solar thermal applications". Journal of Natural Gas Chemistry, 2011. 20(6): p. 568-576.

[25]       R. Zhang, Z. Wang, H. Liu, Z. Liu, G. Liu, X. Meng, "Thermodynamic equilibrium distribution of light olefins in catalytic pyrolysis". Applied Catalysis A: General, 2016. 522: p. 165-171.

[26]       A. Burcat, Thermochemical Data for Combustion Calculations, in Combustion Chemistry, W.C. Gardiner, Editor. 1984, Springer US: New York, NY. p. 455-473.

[27]       D. Green, R. Perry, Perry's Chemical Engineers' Handbook, Eighth Edition. 2007, New York: McGraw-Hill Education.

[28]       L.H. Nguyen, T. Vazhnova, S.T. Kolaczkowski, D.B. Lukyanov, "Combined experimental and kinetic modelling studies of the pathways of propane and -butane aromatization over H-ZSM-5 catalyst". Chemical Engineering Science, 2006. 61(17): p. 5881-5894.

[29]       H. Mochizuki, T. Yokoi, H. Imai, S. Namba, J.N. Kond, T. Tatsumi, "Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking". Applied Catalysis A: General, 2012. 449: p. 188-197.

[30]       H. Mochizuki, T. Yokoi, H. Imai, R. Watanabe, S. Namba, J.N. Kondo, T. Tatsumi, "Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane". Microporous and Mesoporous Materials, 2011. 145(1-3): p. 165-171.

[31]       H. Konno, T. Okamura, T. Kawahara, Y. Nakasaka, T. Tago, T. Masuda, "Kinetics of n-hexane cracking over ZSM-5 zeolites-Effect of crystal size on effectiveness factor and catalyst lifetime". Chemical Engineering Journal, 2012. 207-208: p. 490-496.

[32]       T. Tago, H. Konno, Y. Nakasaka, T. Masuda, "Size-Controlled Synthesis of Nano-Zeolites and Their Application to Light Olefin Synthesis". Catalysis Surveys from Asia, 2012. 16(3): p. 148-163.

[33]       A. Al-Musa, M. Al-Saleh, Z.C. Ioakeimidis, M. Ouzounidou, I.V. Yentekakis, M. Konsolakis, G.E. Marnellos, "Hydrogen production by iso-octane steam reforming over Cu catalysts supported on rare earth oxides (REOs)". International Journal of Hydrogen Energy, 2014. 39(3): p. 1350-1363.